Dr. POULOMI ROY

(Fulbright Fellow)

Senior Scientist

Materials Processing & Microsystems Laboratory
CSIR – Central Mechanical Engineering Research Institute (CMERI), Durgapur
Mahatma Gandhi Avenue, West Bengal, India.

Mobile: +91 (0) 8986853479

□ Email: poulomiroy@yahoo.com, p.roy@cmeri.res.in

EMPLOYMENT / EXPERIENCES

Designation	Organization/Institute	From	То
Senior Scientist	CSIR – Central Mechanical Engineering Research Institute, Durgapur	2017	Continuing
Visting Scientist (Fulbright Fellow)	University of Wisconsin – Madison, USA	2016	2017
Assistant Professor	Birla Institute of Technology Mesra	2012	2017
Assistant Professor	IFHE, Hyderabad	2011	2012
Post-Doc Researcher	University of Erlangen-Nuremberg, Germany	2008	2011

ACADEMIC ACHIEVEMENTS

Degree	Institute/ University	Subjects	Year
Ph.D	I.I.T. Kharagpur	Chemistry	2007
M.Sc.	Vidyasagar University	Inorganic Chemistry (spl)	2002
B.Sc.	Vidyasagar University	Chemistry (Hons.)	2000

RESEARCH INTERESTS

Nanomaterials in Energy Conversion and Storage System					
Photocatalysis	Electrocatalysis	Supercapacitors	Rechargeable Batteries	Solar Cells	Water Splitting
Materials: TiO2 materials etc.	Nanotubes, Mixed	metal oxides, Mix	ed metal chalco	genides, (Carbonaceous

AWARDS AND SCHOLARSHIPS

- ❖ Fulbright-Nehru Academic and Professional Excellence Award 2016-17 to work as visiting scientist in University of Wisconsin Madison, USA.
- Outstanding Researcher in 2010 in University of Erlangen Nuremberg, Germany.
- ❖ Awarded Graduate Aptitude Test in Engineering (GATE) 2002 in chemistry with 95.90 percentile (All India Rank: 0102) conducted by the IISc, Bangalore, India.
- Awarded **National Eligibility Test (NET)** 2002 for Junior Research Fellowship in Chemical Sciences under the University Grant Commission (UGC) fellowship schemes.

PROFESSIONAL BODY MEMBERSHIP

- ♦ Member of Electrochemical Society (ECS).
- ♦ Member of European Materials Research Society (EMRS).
- ♦ Member of American Association for the Advancement of Science (AAAS) (*Membership No. 31009650*).
- ♦ Life Member of Indian Society for Chemists and Biologists (ISCB)

INDUSTRIAL EXPERIENCE

- Industrial research during post-doctoral study with the organization of Energizer Battery Co., 25225 Detroit Road, Westlake, OH 44145, USA. One publication on this: Electrochimica Acta 54, 2009, 5216-5222.
- Collaborative industrial research during post-doctoral study with *Agrolinz Melamine International (A.M.I) Gmbh*, Germany. The project was on the H_2 -gas generation by corrosion of mild steel in CO_3^{2-} containing solutions and the influence of CO_2 on corrosion processes.

TEACHING EXPERIENCE

Undergraduate level:

- Engineering Chemistry: Structure, Bonding & Reactivity, Chemical Kinetics, Catalysis, Phase Rule, Fuels, Lubricants, Electrochemistry, Environmental Chemistry etc.
- Thermodynamics and Thermochemistry
- · Inorganic Chemistry Lab
- Physical Chemistry Lab

Postgraduate level:

- Advanced Inorganic Chemistry (M.Sc. course)
- Metal Chemistry (M.Sc. course)
- Inorganic Chemistry (*I.MSc. course*)
- Nanochemistry: Introduction to nanomaterials, properties, quantum confinement, nanocatalysis, Chemical routes, Physical methods, Nanolithography, Nanocomposites (*M.Tech Course*).
- Surface Analysis and Nanotechnology (Germany): Use of techniques SEM, TEM, EDX, XPS, AFM etc., Applications (Solar Cells, Batteries, Capacitors etc.) (M.Tech Course)
- Environmental Chemistry (Integrated M.Sc. Course)
- Nanochemistry Lab (*M.Tech Course*)
- Inorganic Chemistry Lab (M.Sc. Course).

RESEARCH FUNDING

- **SERB-DST FASTTRACK** research scheme for young scientist on "Cobalt Oxide Graphene Nanocomposite as Anode Material for High Performance of Lithium Ion Battery" 21 lakhs (2014-17) as Principal Investigator Completed.
- **BRNS** sponsored research scheme on "One-dimensional Nanostructured Si-based Electrodes for High-Performance Energy Storage Devices" Rs. 30,02,400/- (2016-19) as Principal Investigator with **BARC** in collaboration (BIT Mesra).
- **CSIR** research grant on "*Metal Oxide Core-Shell Nanostructures as Anode Material for Lithium Ion Batteries*" 23 lakhs (2014-17) as Principal Investigator (BIT Mesra).
- **SERB-DST** sponsored research scheme on "*Towards development of a novel high resolution and high contrast in-vivo imaging technique based on Swept Source Optical Coherence Tomography (SSOCT*) " 30.42 lakhs (2017-20) as Co-Principal Investigator (BIT Mesra).
- **Seed Money Scheme** by BIT Mesra for supporting Research Rs. 80,000/- as Principal Investigator.

Mentorship

- Ms. Shipra Raj Ph.D. Student 2014 (Thesis submitted)
- Mr. Siddhartha Samanta Ph.D. Student as co-guide 2014 (Thesis submitted)
- Mr. Yasodeo Mishra Ph.D. Student as co-quide 2018 (Ongoing)
- Mr. Mayukh Chakraborthy Project Assistant 2016 (Completed)
- Ms. Shalini Divya M.Sc. Project 2015 (Completed)
- Ms. Chitralee Sarma M.Sc. Project 2016 (Completed)

- Ms. Pallavi Summer Intern 2015 (Completed)
- Mr. Sharad Kumar Summer Intern 2015 (Completed)
- Mr. Anupam Das Summer Intern 2016 (Completed)
- Ms. Sadhana Kundu Summer Intern 2016 (Completed)
 Ms. Supriya Kumari Summer Intern 2016 (Completed)

RESEARCH PUBLICATIONS

No.	Publication details (Author name, title, journal name, vol., year, page no.s)	Impact Factor	Cita tion
46.	Shipra Raj, Pradip Kar and Poulomi Roy* , Facile synthesis of flower-like morphology Cu _{0.27} Co _{2.73} O ₄ for a high-performance supercapattery with extraordinary cycling stability, <i>Chem. Commun.</i> , 2018, 54, 12400-12403.	6.29	
45.	Mayukh Chakravarty, Anupam Das, Chitralee Sarma, Poulomi Roy *, a-Fe2O3/TiO2 Hybrids with Tunable Morphologies as Efficient Photocatalyst and Positive Electrode for Supercapacitor, Chem Select , 3, 2018, 3284-3294.	1.505 (Partial)	1
44.	Shipra Raj, Yifan Dong, Pradip Kar, Liqiang Mai, Song Jin, Poulomi Roy* , Hybrid NiCo2O4-NiCo2S4 Nanoflakes as High Performance Anode Materials for Lithium Ion Batteries, Chem Select , 3, 2018, 2315 – 2320.	1.505 (Partial)	
43.	Shipra Raj, Pradip Kar, Poulomi Roy* , Ammonia-Assisted Growth of CoSn(OH)6 Nanostructures and Their Electrochemical Performances for Supercapacitor, J. Nanosci. Nanotechnol ., 18, 2018, 1-7 (DOI: 10.1166/jnn.2018.15829).	1.509	
42.	Indranil Mondal, Shipra Raj, Poulomi Roy , Raju Poddar, Silver Nanoparticles (AgNPs) as contrast agent for imaging of animal tissue using swept source optical coherence tomography (SSOCT), Laser Physics , Just accepted, 2017.	1.102	
41.	Shipra Raj, Suneel Kumar Srivastava, Pradip Kar, Poulomi Roy* , Three-dimensional NiCo2O4/NiCo2S4 Hybrid Nanostructures on Ni-foam as Highperformance Supercapacitor Electrode, RSC Advances , 6, 2016, 95760-95767.	3.289	16
40.	S. Samanta, P. Roy , P. Kar, Influence of structure of poly(o-phenylenediamine) on the doping ability and conducting property, <i>Ionics</i> , 2017, 23, 937 (DOI :10.1007/s11581-016-1904-x).	2.17	
39.	S. Samanta, P. Roy , P. Kar, Synthesis of poly(o-phenylenediamine) nanofiber with novel structure and properties, Polymers for Advanced Technologies , 2016, 28, 797–804 (DOI: 10.1002/pat.3981).	2.007	
38.	S. Raj, S. Kumar, S.K. Srivastava, P. Kar, P. Roy* , Deposition of Tin Oxide Thin Films by SILAR Method and Its Characterization, Journal of Nanoscience and Nanotechnology , Just Accepted.	1.556	5
37.	Shalini Divya, Remith Pongilat, Tapas Kuila, Kalaiselvi Nallathamby, Suneel Kumar Srivastava, Poulomi Roy* , Spinel-Structured NiCo $_2$ O $_4$ Nanorods as Energy Efficient Electrode for Supercapacitor and Lithium Ion Battery Applications, Journal of Nanoscience and Nanotechnology , 16, 2016, 9761-9770.	1.556	8
36.	S. Samanta, P. Ro y, P. Kar, Structure and Properties of Conducting Poly(o-phenylenediamine) Synthesized in Different Inorganic Acid Medium, <i>Macromolecular Research</i> , 24, 2016, 342-349.	1.597	4

	Poulomi Roy* and Suneel Kumar Srivastava*, Nanostructured Anode Materials for Lithium Ion Batteries, <i>Journal of Materials Chemistry A</i> , 3, 2015, 2454-2484. (<i>Selected as 2015 Hot Article and themed collection for Energy storage for JMC-A</i>)	9.931	326
	Poulomi Roy* and Suneel Kumar Srivastava*, Nanostructured Copper Sulfides: Synthesis, Properties and Applications, CrystEngComm. , 17, 2015, 7801-7815.	4.034	53
	Ritwik Panigrahi, Poulomi Roy and Suneel Kumar Srivastava, Controlled Growth of PbSe Nanorods to Flower-like Structure and Their Size-dependent Optical Properties, Advanced Science, Engineering and Medicine , 7, 2015, 190-194.		
	Siddhartha Samanta, Poulomi Roy , Pradip Kar, Influence of pH of the reaction medium on the structure and property of conducting poly(o-phenylenediamine), Materials Today: Proceedings , 2, 2015, 1301 – 1308.		
	Poulomi Roy , Chitta Ranjan Das, Kiyoung Lee, Robert Hahn, Tobias Ruff, Mathias Moll, Patrik Schmuki, Oxide Nanotubes on Ti-Ru Alloys: Strongly Enhanced and Stable Photoelectrochemical Activity for Water Splitting <i>Journal of American Chemical Society</i> , 133, 2011, 5629–5631	11.44	64
	Poulomi Roy , Steffan Berger, Patrik Schmuki, TiO2 Nanotubes: Synthesis and their Applications – A Review, <i>Angewandte Chemie International Edition</i> , 50, 2011, 2904-2939.	13.73	2087
	Chittaranjan Das, Poulomi Roy , Min Yang, Himendra Jha, Patrik Schmuki, Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting, <i>Nanoscale</i> , 3, 2011, 3094-3096.	7.00	81
	H. Jha, P. Roy , R. Hahn, P. Schmuki, Fast formation of aligned high-aspect ratio TiO2 nanotube bundles that lead to increased open circuit voltage when used in dye sensitized solar cells, <i>Electrochem. Commun.</i> , 13, 2011, 302.	4.859	8
	T. Dey, P. Roy , B. Fabry, P. Schmuki, Anodic mesoporous TiO2 layer on Ti for enhanced formation of biomimetic hydroxyapatite, <i>Acta Biomaterialia</i> , 7, 2011, 1873-1879.	5.076	41
	Poulomi Roy , Tuli Dey, Kiyong Lee, Doohun Kim, Ben Fabry, Patrik Schmuki, Size-selective separation of macro-molecules by nanochannel titania membrane with self cleaning (de-clogging) ability, Journal of American Chemical Society , 132, 2010, 7893-7895	11.44	53
	Poulomi Roy , Doohun Kim, Kiyoung Lee, Erdmann Spiecker, Patrik Schmuki, TiO_2 nanotubes and their application in dye-sensitized solar cells, Nanoscale , 2, 2010, 45–59 (Most accessed paper).	7.0	510
	Poulomi Roy , Tuli Dey, Patrik Schmuki, Scanning Electron Microscopy Observation of Nanoscopic Wetting of TiO2 Nanotubes and ODS Modified Nanotubes Using Ionic Liquids, <i>Electrochemistry Solid State Letters</i> 13(7), 2010, E11-E13.	1.967	13
	Yan Yan Song, Poulomi Roy , Indhumati Paramasivam, Patrik Schmuki, Voltage induced payload release and wettability control on TiO2 and TiO2 nanotubes, Angewandte Chemie International Edition , 49, 2010, 351-354 (selected as Hot paper).	13.73	61
	S.P. Albu, P. Roy , S. Virtanen, P, Schmuki, Self-organized TiO2 Nanotube Arrays: Critical Effects on Morphology and Growth, <i>Israel Journal of Chemistry</i> , 50, 2010, 453-467.	0.794	26
21.	D. Kim, P. Roy , K. Lee, P. Schmuki, Dye-sensitized solar cells using anodic TiO2 mesosponge: Improved efficiency by TiCl4 treatment, <i>Electrochem.</i>	4.282	55

	Commun. 12, 2010, 574-578.		
20.	Kiyong Lee, Doohun Kim, Poulomi Roy , Balaji I. Birajdar, Erdmann Spiecker, and Patrik Schmuki, Anodic Formation of Thick Anatase TiO2 Mesosponge Layers for High-Efficiency Photocatalysis, <i>Journal of American Chemical Society</i> , 132, 2010, 1478-1479.	11.44	164
19.	Steffen Berger, Robert Hahn, Poulomi Roy , Patrik Schmuki, Self-organized TiO2 nanotubes: Factors affecting their morphology and properties, Physica Status Solidi B , 247, 2010, 2424-2435.	1.344	18
18.	Wonjoo Lee, Doohun Kim, Kiyoung Lee, Poulomi Roy , Patrik Schmuki, Direct anodic growth of thick WO3 mesosponge layers and characterization of their photoelectrochemical response, <i>Electrochimica Acta</i> , 56, 2010, 828-833.	3.642	20
17.	Doohun Kim, Kiyong Lee, Poulomi Roy , Balaji I. Birajdar, Erdmann Spiecker, and Patrik Schmuki, Formation of a Non-Thickness-Limited TiO2 Mesosponge and its Use in Dye sensitized solar cells, Angewandte Chemie International Edition , 48, 2009, 9326-9329 (selected as Hot paper).	13.73	81
16.	Poulomi Roy , Doohun Kim, Indhumati Paramasivam, Patrik Schmuki, Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles, <i>Electrochemistry Communications</i> , 11, 2009, 1001-1004.	4.243	209
15.	Poulomi Roy , Robert Lynch, Patrik Schmuki, Electron beam induced invacuo Ag deposition on TiO_2 from ionic liquids, Electrochemistry Communications , 11, 2009, 1567–1570.	4.243	13
14.	Yan-Yan Song, Robert Lynch, Doohun Kim, Poulomi Roy , and Patrik Schmuki, TiO2 Nanotubes: Efficient Suppression of Top Etching during Anodic Growth, <i>Electrochemical and Solid-State Letters</i> , 12(7), 2009, C17-C20.	1.837	25
13.	A. Benoit, I. Paramasivam, YC. Nah, P. Roy , P. Schmuki, Decoration of TiO2 nanotube layers with WO3 nanocrystals for high-electrochromic activity, <i>Electrochemistry Communications</i> , 11, 2009, 728-732.	4.243	46
12.	 Serebrennikova, I. Paramasivam, P. Roy, W. Wei, S. Virtanen and P. Schmuki, Steel corrosion in alkaline batteries, <i>Electrochimica Acta</i>, 54, 2009, 5216-5222. 	3.325	1
11.	Poulomi Roy , Kamalesh Mondal and Suneel K. Srivastava, Synthesis of Twinned CuS Nanorods by Simple Wet Chemical Method, <i>Crystal Growth & Design</i> , 2008, 8(5), 1530-1534.	4.215	40
10.	Kamalesh Mondal, Poulomi Roy and Suneel K. Srivastava, Facile Biomolecule-Assisted Hydrothermal Synthesis of Trigonal Selenium Microrods, <i>Crystal Growth & Design</i> , 2008, 8(5), 1580-1584.	4.215	15
9.	Jyotiranjan Ota, Poulomi Roy , Suneel Kumar Srivastava, B.B. Nayak and A. K. Saxena, Morphology Evolution of Sb_2S_3 under Hydrothermal conditions: Flower like Structure to Nanorods, <i>Crystal Growth & Design</i> , 2008, 8(6), 2019-2023.	4.215	24
8.	Poulomi Roy and Suneel Kumar Srivastava, Solvothermal growth of flower-like morphology from nanorods of copper sulfides, <i>Journal of Nanoscience and Nanotechnology</i> , 2007, 8(3), 1523–1527.	1.927	10
7.	Poulomi Roy and Suneel Kumar Srivastava, Synthesis and characterization of Copper sulfide nanorods by soft chemical method, <i>Materials Letters</i> , 61, 2007, 1693-1697.	1.3	36
6.	Poulomi Roy and Suneel Kumar Srivastava, Hydrothermal growth of CuS nanowires from Cu-dithiooxamide, a novel single source precursor, <i>Crystal</i>	4.046	102

	Growth and Design, 6(8), 2006, 1921-1926 (Most accessed article)		
5.	Poulomi Roy and Suneel Kumar Srivastava, <i>In situ</i> Sn-doping of CdS thin film in chemical bath its characterization, Journal of Physics D: Applied Physics, 39, 2006, 4771-4776.		19
4.	Poulomi Roy , Suneel Kumar Srivastava, A New Approach towards the Growth of Cadmium Sulphide Thin Film by CBD Method and Its Characterization, <i>Materials Chemistry and Physics</i> , 95, 2006, 235–241.		67
3.	Poulomi Roy , Suneel Kumar Srivastava, Chemical bath deposition of MoS_2 thin film using $(NH_4)_2MoS_4$ as a single source for molybdenum and sulphur, Thin Solid Films , 496, 2006, 293–298.	1.732	23
2.	Poulomi Roy , Jyoti Ranjan Ota, Suneel Kumar Srivastava, A new route for preparing crystalline ZnS thin films by chemical bath deposition method and its characterization, <i>Thin Solid Films</i> , 515 (4), 2006, 1912-1917.	1.732	115
1.	Jyoti R. Ota, Poulomi Roy , Suneel Kumar Srivastava, R. Popovitz-Biro and Reshef Tenne, Simple hydrothermal method for the growth of Bi_2Se_3 nanorods, Nanotechnology , 17 (6), 2006, 1700-1705.		17

 \sim

Total Publications: **46**Total Citation: **5498** *h*-index: **30***(*based on Scopus.com)

 \sim

Book Chapter:

1. **Poulomi Roy** (2017), *Nanohybrid materials in the development of solar energy applications*. In S.K. Srivastava & V. Mittal (Eds.), Hybrid Nanomaterials: Advances in Energy, Environment, and Polymer Nanocomposites, Chapter 3, *Wiley*.

Conference attended:

- 1. **P. Roy** and S.K. Srivastava, Deposition of CdS Thin Film by Chemical Bath Deposition Method Using Tartaric Acid as a Complexing Agent and Its Characterization. COMPOSIT-05, **IIT Kharagpur**, January 15-18, 2005.
- P. Roy and S.K. Srivastava, Deposition of MoS₂ thiln film, a useful semiconductor material, from a single-source precursor. International conference on MEMS and semiconductor nanotechnology organized by Advanced Technology Centre in association with IIT Kharagpur-721302, December 20-22, 2005.
- 3. **P. Roy** and S.K. Srivastava, Solvothermal growth of flower-like morphology of copper sulfides. International Conference on Nanoscience and Technology by **IIT Delhi, New Delhi**, March 16-18, 2006.
- 4. **P. Roy** and S.K. Srivastava, Synthesis Of Twinned Cus Nanorods By Simple Wet Chemical Method. International Conference on Advanced Nanomaterials by **IIT Bombay, Powai**, January 8-10, 2007.
- 5. **P. Roy**, E. Spiecker, P. Schmuki, TiO2 nanotubes in dye sensitized solar cells: Manipulation in the structure for the improvement of energy conversion efficiency, 216th ECS Meeting, **Vienna, Austria**, Oct. 4-9, 2009.
- 6. **P. Roy**, D. Kim, P. Schmuki, Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles. Kurt Schwaba Symposium, **Germany**, 2009.

- 7. **P. Roy**, D. Kim, K. Lee, I. Paramasivam, P. Schmuki, TiO2 nanotubes and their performances in solar cells. The 3rd Kyoto-Erlangen Symposium, **Germany**, Sept. 2009.
- 8. D. Kim, **P. Roy**, K. Lee, S. Berger, I. Paramasivam, T. Stergiopoulus, R. Hahn, P. Falaras, A. Ghicov, P. Schmuki, TiO2 Nanotubes for Dye-Sensitized Solar Cells. EuroNanoForum2009, **Praha, Czech** June 2-5, 2008.
- 9. D. Kim, **P. Roy**, K. Lee, S. Berger, I. Paramasivam, T. Stergiopoulus, R. Hahn, P. Falaras, P. Schmuki, TiO2 Nanotubes for Dye-Sensitized Solar Cells. The 3rd Kyoto-Erlangen Symposium, **Germany**, 2009.
- 10. **P. Roy**, P. Schmuki, Self-organized TiO₂ Nanostructures Advanced Photocatalysis and Dyesensitized Solar Cells, E-MRS 2010 Fall Meeting, **Warsaw**, **Poland**, Sept. 13-17, 2010.
- 11. **P. Roy**, P. Schmuki, Use of TiO2 mesosponge layers for protein filtration (with UV declogging feature), Electrodeposition Gordon Conference, New London, **New Hampshire**, August 1-6, 2010.
- P. Roy, P. Schmuki, Improved Dye Sensitized Solar Cell Efficiency using TiO2 Nanotubes Decorated with TiO2 Nanoparticles, The 3rd EICOON-2012 International conference, CSIR-CGCRI, Kolkata, India, 23 - 24 February 2012 (*Invited presentation*).
 - http://www.rsc.org/events/detail/7033/3rd%20EICOON%20Workshop%20on%20Nano%20Materials%20in%20Solar%20Energy%20Applications
- 13.S. Divya and **P. Roy**, Anisotropic Nanostructure of NiCo₂O₄ and Their Characterization, The 14th Theoretical Chemistry Symposium, **CSIR-NCL Pune** associated with **IISER Pune**, December 18-21, 2014.
- 14. Siddhartha Samanta, **Poulomi Roy**, Pradip Kar, Synthesis of Processable Poly(ophenylenediamine) as Undoped Conducting Polymer, MACRO-2015: International Symposium on Polymer Science and Technology, **IACS**, **Kolkata**, India, January 23-26, 2015.
- 15. S. Divya, **P. Roy**, S.K. Srivastava, T. Kuila, Synthesis of Nickel Cobaltite Nanorods for Their Application as Supercapacitor, Recent Advances In Nano-Science And Technology (RAINSAT-2015), **Sathyabama University, India**, July 8th 10th, 2015.
- 16. S. Divya, **P. Roy**, S.K. Srivastava, T. Kuila, Nickel Cobaltite Nanorods and Their Nanocomposites with Carbon Nanotubes as Efficient Supercapacitors, NanoEnergy, **Manchester, UK**, June 1-3, 2015.
- 17. S. Raj, S. Kumar, S.K. Srivastava, **P. Roy**, Tin Oxide thin film deposition by SILAR method, International Conference on Materials Science & Technology 2016, **Delhi University**, February, 2016.
- 18. **P. Roy**, Opportunities and Challenges in India at Early Research Career, Young Investigators Meeting, **University of Chicago**, **Chicago**, Oct. 21-23, 2016 (*Invited talk*)
- 19. S. Raj, **P. Roy**, National Confenece on Graphene and Functional Materials, CSIR Central Mechanical Engineering Research Institute, **Durgapur**, **India**, February 23-24, 2018.